Skip to content

Light-based ‘tractor beam’ assembles materials at the nanoscale

A team led by NanoES faculty member Peter Pauzauskie, a professor of materials science and engineering, has developed a method that could make reproducible manufacturing at the nanoscale possible. The team adapted a light-based technology employed widely in biology — known as optical traps or optical tweezers — to operate in a water-free liquid environment of carbon-rich organic solvents, thereby enabling new potential applications.

New metasurface design can control optical fields in three dimensions

A team led by NanoES faculty member Arka Majumdar, an assistant professor of electrical and computer engineering and physics, has designed and tested a 3D-printed metamaterial that can manipulate light with nanoscale precision. As they report in a paper published October 4 in the journal Science Advances, their designed optical element focuses light to discrete points in a 3D helical pattern. Designing optical fields in three dimensions could enable creation of ultra-compact depth sensors for self-driving cars, as well as improved components for virtual- or augmented-reality headsets.